TEORÍAS

TEORÍA CELULAR: Teoría celular enunciada por Matthias Schleiden (1804-1881) y Theodor Schwann (1810-1882).
La teoría celular de Schleiden y Schwann señala un rasgo común para todos los seres vivos:
Todos los seres vivos están compuestos por células y por productos elaborados por ellas.
Aunque la idea de que la célula es el "átomo" de la vida nos parezca evidente, su importancia y la dificultad de su descubrimiento son parejas a la dificultad del descubrimiento de la existencia de átomos en química, y marca un cambio de paradigma en la manera de concebir la vida.

La teoría celular se basó en los adelantos realizados mediante los aparatos de observación debidos inicialmente a Robert Hooke (1635-1703) y a Antoni Van Leeuwenhoek (1632-1723). Hooke construyó cientos de microscopios. Los más avanzados estaban formados por dos lupas combinadas como ocular y objetivo (microscopio compuesto). 
Aunque con ellos llegó a alcanzar 250 aumentos, eran preferibles los de una sóla lente, como los que construyó van Leeuwenhoek, ya que presentaban menos aberración cromática. Con esos instrumentos consiguieron descubrir infusorios (aquellas células o microorganismos que tienen cilios u otras estructuras de motilidad para su locomoción en un medio líquido), bacterias, o la existencia de capilares en la membrana interdigital de las ranas.

TEORÍA DE LA EVOLUCIÓN:


Durante el siglo XVIII un grupo de investigadores, que fueron llamados naturalistas, consiguieron reunir una gran cantidad de información sobre la fauna y la flora en muy diversas zonas de nuestro planeta. Un problema que planteó la acumulación de tan notable volumen de información fue su organización. La clasificación de los seres vivos se realizó, en un primer momento, mediante amplias descripciones de la morfología y procedencia de los distintos individuos encontrados. Este tipo de descripciones no constituían una verdadera ayuda para conseguir clasificaciones que fueran suficientemente unívocas [Velázquez 2007: 131-142].
El sistema ideado y desarrollado por Linneo (1707-1778) supuso una importante mejora en la organización de la información disponible. Consistió en proponer una serie de reglas para asignar a todos los seres vivos conocidos una etiqueta de género y especie. Esta clasificación, cuya primera edición fue publicada en 1735, se llamó Sistema Naturae.Resultado de imagen para evolucion

Lógicamente, en ese momento, eran las propiedades morfológicas de los distintos seres vivos las que permitían asignar género y especie a un individuo concreto. Aunque no está exento de arbitrariedades, el trabajo realizado por Linneo simplificó enormemente la tarea de clasificar animales y plantas. En líneas generales, la estructura arborescente que desarrolló sigue vigente en nuestros días, a pesar de los cambios experimentados por la biología desde entonces.
Para Linneo las especies identificadas constituían grupos de seres bien diferenciados y sin ninguna relación de procedencia. El criterio de parentesco, como hemos indicado, era meramente morfológico. Esta perspectiva llamada fijista consideraba que cada una de las especies estaba creada tal y como era, y sus individuos no experimentaban cambios a lo largo del tiempo.
No obstante, la acumulación de datos proporcionados por los naturalistas, y los avances experimentados en su organización, propiciaron la adopción de otros enfoques bien diferentes al fijista. Pronto se fue abriendo paso la idea de que unas especies provenían de otras y que, por tanto, había que conseguir una clasificación que reflejara las afinidades entre los distintos seres vivos desde otras perspectivas: había que conseguir lo que se llamó una clasificación natural.

TEORÍA DE LA HOMEOSTASIS: 
El concepto de homeostasis apareció por primera vez en los 1860s, cuando el fisiólogo Claude Bernard (1813-1878) describió la capacidad que tiene el cuerpo para mantener y regular sus condiciones internas. Esta homeostasis es crítica para asegurar el funcionamiento adecuado del cuerpo, ya que si las condiciones internas están reguladas pobremente, el individuo puede sufrir grandes daños o incluso la muerte.
Posteriormente, en 1933, Walter B. Cannon (1871-1945) acuñó la palabra "homeostasis" (gr. homeo- constante + gr. stasis, mantener) para describir los mecanismos que mantienen constantes las condiciones del medio interno de un organismo, a pesar de grandes oscilaciones en el medio externo. Esto es, funciones como la presión sanguínea, temperatura corporal, frecuencia respiratoria y niveles de glucosa sanguínea, entre otras, son mantenidas en un intervalo restringido alrededor de un punto de referencia, a pesar de que las condiciones externas pueden estar cambiando.
Las células de un organismo sólo funcionan correctamente dentro de un intervalo estrecho de condiciones como temperatura, pH, concentraciones iónicas y accesibilidad a nutrientes, y deben sobrevivir en un medio en el que estos parámetros varían hora con hora y día con día.Los organismos requieren mecanismos que mantengan estable su medio interno intracelular a pesar de los cambios en el medio interno o externo, por lo que la homeostasis se ha convertido en uno de los conceptos más importantes en fisiología y medicina.
Por ejemplo, el cuerpo humano mantiene el pH de la sangre entre 7.35 y 7.45, aunque el metabolismo corporal constantemente genera numerosos productos ácidos de desecho que retan su capacidad para mantener el pH dentro de ese intervalo. Las consecuencias de no hacerlo son graves, ya que valores de pH menores a esos producen acidosis y valores superiores originan alcalosis, y cualquiera de ellos es peligroso para la vida. Es posible vivir pocas horas con un pH sanguíneo abajo de 7.0 o arriba de 7.7, pero un pH abajo de 6.8 o arriba de 8.0 es rápidamente fatal.
Resultado de imagen para homeostasis
TEORÍA DE LA HERENCIA:
Las enfermedades monogénicas también reciben el nombre de enfermedades mendelianas ¡Y todo tiene una explicación! Son conocidas con esta denotación porque siguen los patrones de herencia que  GREGOR MENDEL, reconocido como el padre de la Genética, describió en 1866. Estos patrones de transmisión de la información hereditaria se rigen en base a tres leyes fundamentales que postuló Mendel a partir de unos estudios que realizó con plantas de guisante, extrapolables al resto de seres vivos.
Resultado de imagen para herencia genetica


  • 1ª LEY DE MENDEL: Ley de la uniformidad de los híbridos de la primera generación filial. Esta defiende que al cruzar una raza pura de una especie (AA) con otro individuo de raza pura de la misma especie (aa), la descendencia de la primera generación filial será fenotípicamente y genotípicamente igual entre sí (Aa) y fenotípicamente igual a uno de los miembros de la generación parental, en concreto, al portador del alelo dominante (A).
  • 2ª LEY DE MENDEL: Ley de la segregación. Esta ley dicta que en la segunda generación filial, obtenida a partir del cruce de dos individuos de la primera generación filial, se recupera el genotipo y fenotipo del individuo recesivo de la primera generación parental (aa) en un 25%. Del 75% restante, fenotípicamente iguales, el 25% tiene el genotipo del otro parental inicial (AA) y el 50% restante se corresponde con el genotipo de la primera generación filial. 
  • 3ª LEY DE MENDEL: Ley de la transmisión independiente o de la independencia de los caracteres. Durante la formación de los gametos, la segregación de los diferentes rasgos hereditarios se da de forma independiente unos de otros, por lo tanto, el patrón de herencia de uno de ellos no afectará al patrón de herencia del otro.

Comentarios